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A B S T R A C T   

The current problem of motor imagery Electroencephalogram(EEG) signal classification is low classification 
accuracy and fixed EEG channel selection. We proposed a novel classification algorithm for motor imagery EEG 
signals, which overcomes the contradiction between the number of channels and the representational ability of 
features. Higher classification accuracy is achieved using less number of channels. The algorithm makes a 
combination of time windows, filter banks, and an optimal sorting of the projection space to reveal multi-domain 
information. Experiments based on the two datasets of BCI Competition have proved that the channel selection 
strategy used in this paper can adapt to the subject’s neural information and select the optimal channel com-
bination. The feature extraction algorithm proposed can achieve excellent classification accuracy (77.7 %) and 
kappa value (0.70). The results are improved by 26.2 % compared to the One Versus One-Common Spatial 
Pattern (OVO-CSP) method and by 8.2 % compared to the One Versus One-Filter bank common spatial pattern 
(OVO-FBCSP) method. Additionally, the proposed method has outperformed to the other state-of-the-art methods 
using the same data set in terms of the performance. The proposed methodology can be employed as a promising 
tool for a motor imagery BCI device.   

1. Introduction 

Brain-computer interface (BCI) aims to establish a system that does 
not rely on the brain’s normal output pathways of peripheral nerves and 
muscles but uses computers or other output devices to directly build up a 
special channel to communicate with the brain [1,2]. Electroencepha-
logram (EEG) is a non-invasive and low-cost technique of acquiring 
brain signals, which is widely used in BCI systems for research. Motor 
imagery (MI) has become a hot issue in the field of BCIs, as a phenom-
enon that the power of motor-relevant cortex EEG signals is decreased or 
increased when people imagine limb movements; the changes are 
known as event-related desynchronization (ERD) or event-related syn-
chronization (ERS) [3,4]. 

The CSP is a particularly popular and effective signal processing 
technique for EEG-based BCIs, which can achieve a powerful perfor-
mance using some tricks of the trade [5]. But this method has short-
comings such as noise sensitivity, overfitting, and only binary-class 
availability, which can lead to various extensions of the CSP. The filter 
bank CSP (FBCSP) is used to filter the EEG signal into multiple frequency 
bands to extract CSP feature, which can improve the classification 

results [6]. Shrinkage Regularized Filter Bank CSP (SR- FBCSP) is a 
regularization approach based on shrinkage estimation, which can 
handle small sample problem and retain subject-specific discriminative 
features [7]. Regularized CSP (RCSP) has been proposed to reduce the 
overfitting of CSP. Four RCSP terms, including two proposed regulari-
zation terms for optimizing the objective function, are suggested in [8]. 
Analytic CSP (ACSP) can provide a more comprehensive picture of the 
underlying activity by explicitly considering the amplitude and phase 
information in the EEG [9]. A class discrepancy-guided sub-band filter- 
based CSP (CDFCSP) algorithm is proposed to automatically recognize 
and augment the discriminative frequency bands for CSP algorithms in 
[10]. A framework of information theoretic feature extraction (ITFE) is 
proposed to address the question of optimality of CSP in terms of the 
minimal achievable classification error and extensions to multiclass 
paradigms [11]. Alexandre et al. use spatial covariance matrices ob-
tained from CSP as EEG signal descriptors and relyon Riemannian ge-
ometry to directly classify these matrices using the topology of the 
manifold of symmetric and positive definite (SPD) matrices [12]. A 
maximum mutual information linear transformation (MMI-LinT), and a 
nonlinear transformation(MMI-NonLinT) framework are proposed to 
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select the feature vectors obtained from the FBCSP, and a graphical 
model based hierarchical decoding framework is proposed to solve 
multi-class problems, which achieves excellent results [13]. An optimal 
channel selection method is proposed to improve CSP features by 
selecting the channels in terms of correlation coefficient values, which 
compute the Fisher score of the feature output based on FBCSP to apply 
the channel group to solve the binary classification problem [14]. 

Different from the perspective of the above algorithms, we do not 
only employ CSP as a feature extractor but also as a channel selector. 
Inspired by the characteristic that the projection space obtained from 
CSP contains spatial information of each channel, we design a criteria to 
search the optimal ordering of projection space. Based on this optimal 
ordering, we propose a channel selection strategy and an optimized 
feature extraction method. Moreover, the fusion of multi-domains may 
achieve better results, so we have taken advantage of the time windows 
and filter banks. Finally, we construct a classification framework based 
on time-frequency-space fusion, which effectively discards the number 
of channels irrelevant to the motion imagery and improves the classi-
fication accuracy significantly. 

Experiment results show that the algorithms we proposed can ach-
ieve a higher classification accuracy and kappa value in the multi- 
classification tasks of motor imagery. The rest of this paper is orga-
nized as follows. In section2, we briefly describe the experimental data 
we used and the pre-processing operation of the raw EEG signals. In 
section 3, all steps of the proposed algorithm are described in detail. 
Accordingly, the algorithm obtained results are illustrated in section 4, 
followed by a summary of our study in section 5. 

2. Experimental data and preprocessing 

In this paper, the EEG data based on four tasks (the left hand, right 
hand, both feet, and tongue) of motor imagery are derived from the BCI 
Competition III Dataset IIIa and the BCI Competition IV Dataset 2a. 

Dataset IIIa contains the experimental data of 3 subjects (k3b, k6b, 
and l1b). The raw EEG data of a total of 64 channels were collected in the 
experiment. The experimental data of subject k3b is divided into 180 
training samples and 180 testing samples, and the EEG data of subjects 
k6b and l1b are divided into 120 training samples and 120 testing 
samples. The four types of motor imagery tasks in the training samples 
and testing samples are the same, and details can be found in [15]. 
Dataset 2a contains the experimental data of 9 subjects (A01 ~ A09). 
The raw EEG data of a total of 22 channels were collected in the 
experiment. All EEG data of each subject is divided into 288 training 
samples and 288 testing samples, and the four types of motor imagery 
tasks in the training samples and testing samples have the same number 
of trails, 72 times in each class, and details can be found in [16]. 

To improve the signal-to-noise ratios (SNR) of the EEG signals, we 
perform a simple preprocessing of the EEG signals of each dataset. First, 
the blank point data of “NaN” in the EEG data is set to 0 [17], and a 5- 
order Butterworth bandpass filter is used to filter the EEG signals with 4- 
32hz. To further reduce the noise between each channel, the common 
average reference method (CAR) commonly used in the spatial filtering 
of the EEG signals is processed [18], and finally, the EOG channel and 
artifacts are removed manually. 

3. Classification algorithm based on multi-domain information 
fusion 

The overall pipeline of the algorithm proposed in this paper is shown 
in Fig. 1.The details are as follows. Firstly, the raw EEG signal is pre-
processed, and then the pre-processed EEG signals are selected using the 
channel selection strategy combined with time-frequency-space infor-
mation, as shown in Fig. 3. Secondly, the feature extraction algorithm 
combined with time-frequency-space domain information is used to 
extract features from the optimal channel group, and the specific pipe-
line is shown in Fig. 5 Finally, the obtained fused features are fed into the 
multi-class support vector machine (SVM) classifier to obtain the clas-
sification results. 

3.1. OVO-CSP algorithm 

The CSP algorithm designs spatial filters based on two types of sig-
nals, and by simultaneously diagonalizing two covariance matrices that 
the EEG signal variance between different classes can be maximized to 
distinguish [19]. We briefly describe the CSP algorithm. In section 3.2.1 
and section 3.3.1 we specify the improvements we have made to the CSP 
algorithm. 

We consider the variable X ∈ RN to represent the EEG data, where N 
is the number of recording channels, then the covariance matrix of a 
class of EEG signals can be expressed as. 

Ci =
XXT

trace
(
XXT

) (1) 

The composite spatial covariance matrix can be obtained as Cc =

Ca + Cb, Ca and Cb respectively represent the average covariance matrix 
of the two classes of motor imagery tasks. And Cc can be decomposed 
into Cc = UcλcUT

c , where is Uc the eigenvector of the matrix and λc is the 
eigenvalue. The whitening transformation martix P can be obtained by 
Uc and λc. Then the Ca and Cb can be transformed into Za = PCaPT and 
Zb = PCbPT. It can be obtained by proof that the whitened Za and Zb have 
the same eigenvector B, such that. 

Fig. 1. General framework of motor imagery EEG classification algorithm based on multi-domain information fusion.  
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Za = BλaBT and Zb = BλbBT(λa + λb = I)

The projection matrix W can be calculated by the eigenvector B and 
the whitened EEG signal as. 

W = BT P (3) 

Select the front m and back m rows of the projection matrix W to form 
a spatial filter to obtain the feature, then the EEG data of the two types of 
task experiments E can be transformed into S = W2m×NE. 

The projected signal Sp(p = 1,…,2m) is changed as the characteristic 
value as follows: 

fp = lg

(
var
(
Sp
)

∑2m
i=1var(Si)

)

(4) 

where var(Sp) denotes the variance of the p-th row component in S. 
Thus, the feature vector fp is obtained by formula (4). 

To solve the multi-classification tasks of motor imagery, we use the 
idea of the “one versus one” extension to extract features from the EEG 
data. The “one versus one” method aims to transform an N classification 
problem into N×(N-1)/2 binary classification problems [20], which is 
shown in Fig. 2(a), the process of single-sample OVO-CSP feature 
extraction is shown in Fig. 2(b). 

3.2. Channel selection strategy 

As the number of channels selected increases, problems such as 
channel information redundancy, high computation and time overhead 
will appear. Due to the characteristic that the CSP can only achieve a 
significant effect when more electrode channels are input, how to 
eliminate useless channel information and increase the retention rate of 

effective channel information is one of the directions that the CSP al-
gorithm can optimize. 

3.2.1. Channel screening criteria based on the optimal ordering of OVO- 
CSP projection space 

Taking advantage of the characteristic that the spatial information of 
each channel is recorded in the projection space W, which generated 
during the process of the CSP, an optimization method combining 2 
norm and Frobenius norm selection criteria is proposed. The specific 
steps of the method are as follows: 

Step 1: Let WCSP ∈ RN be the projection matrix calculated by formula 
(3). N is the number of channels. We denote the i-th column vector in 
WCSP as wi. The wi represents the weight of each channel signal xi(i = 1,
2, …, N) in the projection space, which reflects the influence of the 
channel signal on the projected space [21]. Based on the characteristics 
of projection space described above, a method for calculating the 
channel contribution rate (CCR) through the vector 2 norm and the 
matrix Frobenius norm is proposed: 

CCR(i) =
‖wi‖2

‖WCSP‖F
(6) 

Step 2: Calculate the CCR of each channel and rank wi in WCSP in 
descending order according to their CCR. Then select the top K channels 
with the CCR as the optimized channel group. We denote the EEG data of 
optimal channel group as E ∈ RK, and the signal S′ after spatial filtering 
is obtained by. 

S
′

= W
′

CSPE
′

=

⎡

⎣
w11 ⋯ w1k
⋮ ⋱ ⋮

wk1 ⋯ wkk

⎤

⎦

⎡

⎣
E1
⋮

EK

⎤

⎦ (7) 

Fig. 2. One Versus One classification logic(a) and OVO-CSP feature extraction process for one sample(b). In (b), N is the number of channels and T is the value points 
in the sample. 

Fig. 3. Flowchart of channel selection strategy combined with time-frequency-space information. The tsi represents the i-th time window, fbi represents the i-th 
frequency band and WCSP represents the generated projection matrix. 
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3.2.2. Channel selection strategy combined with time-frequency-space 
information 

In this paper, a channel selection strategy combined with time- 
frequency-space domain information is proposed, which is shown in 
Fig. 3. The strategy first performs time-domain segmentation and 
frequency-domain filtering on the preprocessed EEG signals to obtain 
different time-frequency domain sub-bands, and selects the optimal 
channel group by combining the channel screening criteria based on the 
optimal ordering of OVO-CSP projection space. The steps of this strategy 
include the following: 

Step 1: The pre-processed EEG signals were intercepted for analysis 
using a set of time windows with fixed length 3 s, the time interval of 
each time window is 0.02 s, so the EEG data from 2.3 s ~ 5.8 s could be 
divided into 26 time windows. 

Step 2: The filter banks filtering is performed for each time window. 
we use a set of second-order IIR filters with a frequency bandwidth of m 
Hz and an overlap width of w Hz [22]. We define that this operation 
generates N filters covering 4–32 Hz. Depending on the number of raw 
EEG channels, we provide two parameter settings, Table 1 gives an 
intuitive setting of the two datasets we used. 

Step 3: The projection matrix generation operation is performed on 
the frequency sub-bands in each time window, and the CCR of each 
channel is calculated. The top K channels with the highest CCR are 
selected. However, there is a possibility that the top K channels selected 
in each frequency band are not the same, so we use the method of taking 
the union set to record all the channels that appear. Finally, the selected 

U different channels are used as the optimized channel group, where U is 
the number of channels after doing the union processing. The parameter 
K is selected by traversing a range of values to obtain the optimal value, 
we choose the range of values from 7 to 20. 

3.3. Feature extraction algorithm 

We proposes a feature extraction algorithm generating the feature 
vectors containing multi-domain information, which fully increase the 
characterization capability and richness of features [23]. The overall 
pipline is shown in Fig. 5. 

3.3.1. Feature extraction method based on one versus one-common spatial 
sorting patterns 

Combining the OVO-CSP feature extraction method with the channel 
screening criteria based on the optimal ordering of the projection space, 
a feature extraction method based on the optimal ordering of the pro-
jection space in OVO-CSP can be summarized, which is named as OVO- 
CSSP. 

The implementation process of this method is shown in Fig. 4. This 
method first performs the OVO-CSP process to obtain the projection 
matrix W as shown in formula (3), secondly, the CCR of each channel in 
the projection space is calculated according to formula (6), and then 
arranges the projection matrix column vectors in descending order ac-
cording to the CCR to obtain the new projection matrix W′ , then per-
forms the projection signal calculation, finally, the feature vectors are 
obtained. 

3.3.2. Feature extraction method based on Mu and Beta rhythm window 
energy 

Mu (8–13 Hz) and Beta (14–30 Hz) rhythms are strongly related to 
the ERD and ERS phenomena in the motor cortex, so we use a light-
weight computational but effective approach to extract the rhythmic 
window energy in these two relevant frequency bands [24]. 

The details of the approach are as follows: All value points in the time 
window are filtered to the frequency band corresponding to the Mu and 
Beta rhythm bands using a 5th order Butterworth filter, respectively. 
The window energy of the rhythm band is expressed by first calculating 
the sum of squares of all sample points in the window and then taking 
the logarithm [25]. Therefore, the window energy of channel k on Mu or 
Beta rhythm is written as follows: 

fchk = ln

(
1
M
∑M

i=1
v2

i

)

(8) 

Where M is the number of value points in the time window, v2
i rep-

resents the square of the i-th value point. 

3.3.3. Feature extraction algorithm combined with time-frequency-space 
information 

The steps of the feature extraction algorithm combining time- 
frequency-space information are as follows: 

Step 1: A set of time windows is used to intercept the optimal channel 
group of EEG singals for analysis, the method and parameter setting of 
time windows generated are the same way as step 1 in section 3.2.2. 
Then Mu and Beta rhythm window energy based on the optimal channel 
group are extracted, which we define the feature vectors as F1; 

Step 2: Perform filter banks frequency domain filtering on the EEG 
signals in the time window. The filtering method is consistent with the 
processing method of step 2 in section 3.2.2. The OVO-CSSP feature 
extraction is performed for each generated frequency domain sub-band 
in the time window, and the feature vectors obtained from all frequency 
bands need to concatenate, which we define the feature vectors as F2; 

Step 3: We fuse the feature vectors generated by Step1 and Step2 in 

Table 1 
The parameter settings for the Dataset IIIa and Dataset 2a.  

Parameter 
setting 

m 
(Hz) 

w 
(Hz) 

N Frequency sub-bands 

Dataset IIIa 4 2 14 4–8 Hz, 6–10 Hz … 26–30 Hz, 28–32 
Hz 

Dataset 2a 7 4 7 4–11 Hz, 7–14 Hz … 22–29 Hz, 
25–32 Hz  

Fig. 4. Flowchart of OVO-CSP feature extraction optimization method based on 
the optimal ranking of projection space (OVO-CSSP). 
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the form Ffusion = {F1, F2}, and we define Ffusion to be the final feature 
vectors. 

4. Experimental results 

4.1. Classifier and evaluation indicators 

SVM is one of the most commonly used classifiers in the research of 
multi-class MI classification tasks [26], not only it can achieve good 

performance in the classification of EEG signals, but more importantly, 
the classifier embodies rapidity in terms of algorithmic complexity and 
time overhead. 

The penalty factor C and the parameter g of the Gaussian kernel 
function are the key factors for SVM [27]. We use the grid search method 
for parameter searching. Based on engineering experience, we set the 
penalty parameter C and the kernel function parameter g in the range of 
[ − 10,10], with a valued step of 2. And we use the ten-fold cross-vali-
dation method to verify the classification accuracy, which can make the 
experimental results more reliable. 

This paper uses two commonly used evaluation indicators in BCI 
research, classification accuracy and kappa value. 

4.2. Experimental results and analysiss 

The highest classification recognition rates, kappa values, and the 
number of channels in optimal channel groups of the Dataset IIIa and 
Dataset 2a are given in Tables 2 and 3, respectively. 

Table 3 
The recognition rate, Kappa value, and the number of selected channels of nine subjects from the Dataset 2a.  

Subject A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean 

Recognition rate/% 90.036 59.364 86.081 71.053 58.333 54.419 91.336 85.239 79.167  75.00 
Kappa value 0.867 0.458 0.814 0.614 0.444 0.392 0.884 0.803 0.722  0.667 
Number of channels 17 13 22 18 21 19 17 22 10  —  

Table 4 
Comparison of classification accuracy of Dataset2a subjects using different feature extraction methods.  

Methods Subjects and their classification accuracy/(%) 

A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean 

F1(m = 1)  48.26  34.38  67.36  37.15 25.35  25.35  42.36  68.40  63.54  45.79 
F1(m = 2)  56.60  36.81  68.40  40.97 25.34  29.17  46.53  72.57  68.75  49.46 
F1(m = 3)  60.07  42.71  69.10  43.40 25  32.64  48.96  67.01  70.14  51.00 
F2(m = 1)  81.94  57.98  75.69  64.24 62.85  45.14  81.94  77.08  69.44  68.48 
F2(m = 2)  81.25  55.90  75.69  59.72 59.72  43.40  82.64  78.13  63.19  66.63 
F2(m = 3)  75.69  55.56  76.04  61.11 59.38  38.19  80.56  76.04  64.24  65.20 
F3  87.19  58.66  85.45  68.42 58.06  52.09  89.89  84.24  75.76  73.31 
F4  90.04  59.36  86.08  71.05 58.33  54.42  91.34  85.24  79.17  75.00  

Fig. 5. Flowchart of feature extraction algorithm combined with time-frequency-space information.  

Table 2 
The recognition rate, Kappa value, and the number of selected channels of three 
subjects from the Dataset IIIa.  

Subject k3b k6b l1b Mean 

Recognition rate/% 97.987 75.904 83.133  85.675 
Kappa value 0.973 0.679 0.775  0.809 
Number of channels 17 15 15  —  
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It can be seen from Table 2 that three subjects, k3b, k6b, and l1b have 
achieved the average classification accuracy of 85.68 % and the average 
kappa value of 0.81. The Dataset IIIa uses 60 channels (excluding the 
ocular electrical channels) to collect EEG data. Subjects k6b and l1b 
select only 15 channels, which accounts for the number of original 
channels 25 %. In Table 3, A01 ~ A09 achieve the average classification 
accuracy of 75.00 %, and the average kappa value of 0.67. The Dataset 
2a only uses 22 channels (excluding the ocular electrical channels) to 
collect EEG data, 2/9 of the subjects have a full selection of channels but 
the remaining subjects have a significant reduction in the number of 

channels selected, the best selection effect is 10 channels, accounting for 
45 % of the original number of channels. 

To verify the effectiveness of the algorithm, this paper takes nine 
subjects of the Dataset 2a as an example and conducts comparative ex-
periments using different feature extraction methods. F1, F2 is used to 
denote the conventional OVO-CSP algorithm, OVO-FBCSP algorithm 
[28], respectively. F3 represents the algorithm we proposed but does not 
include the feature extraction method based on Mu and Beta rhythm 
window energy, and F4 denotes the complete algorithm we proposed. 
Table 4 shows the results of the highest classification accuracy obtained 

Fig. 6. Brain topology map of optimal channel group weight in every subject.  
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from F1,F2,F3,F4, where m represents the number of groups of selected 
spatial filters in the OVO-CSP algorithm and the OVO-FBCSP algorithm. 

It can be found from Table 4 that for all subjects, the proposed 
method in this paper have a significant improvement in recognition rate 
compared with F1, F2 feature extraction algorithms. Specifically, the 
accuracy rate of the proposed algorithm has improved by about 26.2 % 
compared with the OVO-CSP algorithm and about 8.2 % compared with 
the OVO-FBCSP. By comparing with the F3 feature extraction method, it 
is found that the fused features after adding Mu and Beta rhythm win-
dow energy can effectively improve the classification performance. 

A large number of studies([29,30,31]) have proved that people will 
induce EEG signals in the brain area near the cerebral motor cortex 
according to performing different motor imagery tasks. To verify 
whether the channel selection strategy combining time-frequency-space 
information is consistent with neurophysiological characteristics, we 
use brain topology maps to confirm whether the selected optimal 

Table 5 
Classification recognition rate (%) based on different channel combination.  

Subject C3, C4, 
Cz 

Combination of 11 
channels 

All 
Channel 

The strategy of this 
paper 

k3b  82.55  93.29  97.32  97.99 
k6b  44.58  68.67  69.88  75.90 
l1b  71.08  82.34  81.93  83.13 
A01  65.84  83.99  88.61  90.04 
A02  49.12  53.00  55.48  59.36 
A03  67.40  79.12  86.08  86.08 
A04  43.86  65.35  69.30  71.05 
A05  44.20  55.43  57.97  58.33 
A06  42.33  55.35  54.42  54.42 
A07  70.04  84.84  88.44  91.34 
A08  62.73  81.18  85.24  85.24 
A09  63.26  76.52  74.24  79.17  

Fig. 7. Comparison of classification accuracy between different classifiers for all subjects.  

Table 6 
Comparison of kappa value between the method in this paper and other paper methods.  

Subjects Method of this paper CCSP-SVM [33] Siamese NN [34] OVO-FBCSP CNN [35] BSC CSP-SVM [36] BCI III1st [37] BCI IV1st [38] 

k3b  0.973  0.94  —  —  0.800  0.822  — 
k6b  0.679  0.63  —  —  0.533  0.756  — 
l1b  0.775  0.70  —  —  0.777  0.800  — 
A01  0.867  0.72  0.819  0.758  —  —  0.68 
A02  0.458  0.40  0.340  0.440  —  —  0.42 
A03  0.814  0.70  0.788  0.676  —  —  0.75 
A04  0.614  0.55  0.392  0.523  —  —  0.48 
A05  0.444  0.20  0.340  0.504  —  —  0.40 
A06  0.392  0.35  0.389  0.268  —  —  0.27 
A07  0.884  0.66  0.434  0.759  —  —  0.77 
A08  0.803  0.78  0.705  0.695  —  —  0.75 
A09  0.722  0.77  0.778  0.592  —  —  0.61 
Average(k3b-l1b)  0.809  0.793  —  —  0.704  0.793  — 
Average(A01-A09)  0.667  0.57  0.554  0.579  —  —  0.57 
Average  0.702  0.617  —  —  —  —  —  
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channel group distribution and the weight of each channel in the motor 
imagery tasks are consistent with the neurophysiological knowledge. 

Fig. 6 shows the brain topology map of the optimal channel group 
distribution selected by the 12 subjects according to the algorithm we 
proposed, the weight value of each channel in the optimal channel group 
represents the CCR in the projection space, and the weight value of the 
unselected channel is 0. As shown in the figure, the optimal channel 
groups of the 12 subjects screened by the algorithm we proposed are 
mainly located in the cerebral motor cortex area (near the C3 and C4 
electrodes), which is consistent with the fact that motor imagery evokes 
relevant EEG signals in the motor cortex region of the brain. The above 
discussion indicates that our channel selection strategy is viable. 

Based on the distribution of channels, it can be concluded that 
although the distribution of the optimal channel group in different 
subjects is concentrated in the motor areas of the cerebral cortex, the 
most suitable channels are various for different subjects. For example, in 
Fig. 6, the most important channels of subjects k3b and k6b are located 
at C4 and C3 electrodes, subjects A01 and A09 are located at C1 and CP1 
electrodes, while subjects A03 and A08 are located at CP2 electrode, etc. 

Three different channel combination methods are considered to 
compare with the optimal channel groups selected by the method we 
proposed, including the most common cobimation of the C3, C4, Cz 
channels, the channel group formed by manually selecting 11 channels 
concentrated in the motor cortex of the brain (FC1, FCZ, FC2, C3, C1, CZ, 
C2, C4, CP1, CPZ, CP2), and the all channels. Results of using the same 
feature extraction method proposed in section 3.3.3 are shown in 
Table 5. 

Among the four channel selection methods, the best results were 
obtained using the channel selection strategy based on multi-domain 
information fusion. This shows that our proposed channel selection 
strategy selects the channel combination that matches the neural in-
formation of the subjects, which verifies the effectiveness and practi-
cability of the strategy. The results of Table 5 also verify that using a 
suitable channel selection strategy is more scientific and accurate than 
the conventional way of channel selection, such as selecting a fixed 
combination of channels or selecting all channels. 

Furthermore, we also used Deep Learning Network such as ResNet50 
[32] and the machine learning classifier algorithms based on an inte-
grated idea such as LightGBM [33] to classify the feature vectors 
extracted in this paper, however, the results were slightly less effective 
than SVM on all subjects, as shown in Fig. 7. 

Table 6 compares the results of the kappa value achieved by our 
method with other methods using the same dataset in the last three years 
and with the first place winners of the two competitions. Ghanbar et al. 
[34] uses an algorithm based on temporal correlation CSP regularization 
algorithm combined with SVM for classification. Shahtalebi et al. [35] 
uses a Siamese Neural Networks algorithm that combines OVR and OVO 
ideas for feature extraction and classification. Holm et al. [36] uses an 
OVO-FBCSP combined with a CNN algorithm for classification. Jin et al. 
[37] proposed a channel selection method combining logarithmic 
amplitude with first-order spectral moment feature (BCS) and combined 
with CSP algorithm and SVM for classification. The first place in the BCI 
Competition III Dataset IIIa [38] uses the CSP algorithm to calculate the 
Fisher ratio of the time-frequency domain channel for channel selection 
and the SVM algorithm for classification. The first place in the BCI 
Competition IV Dataset 2a [39] uses the OVR method to extend the 
improved filter bank CSP to multiple classes, and the classifier used is 
the Naive Bayes Parzen Window classifier. It is proved through experi-
ments that the kappa values obtained by the algorithm proposed in this 

paper are all higher than the above-mentioned methods. 
The satisfied results of this proposed algorithm can be attributed to 

the following reasons. On the one hand, the channel selection strategy 
proposed in this paper can better select the channel combination suit-
able for the current subject, reduce the information interference of 
useless channels, and lay a good foundation for subsequent feature 
extraction. On the other hand, the feature extraction algorithm proposed 
in this paper can generate feature vectors containing time-frequency- 
space information, so that the features describing EEG signals are no 
longer single, more sufficient description information can be obtained 
[40]. 

Further discuss the generalization ability of the algorithm we pro-
posed. From the results, our proposed algorithm is adaptive, which 
indeed has generalization ability. The reasons are as follows, from the 
perspective of time domain, we found that in the interval of 2.3 s-5.8 s, 
the subjects’ motor imagery is the most active and the most suitable for 
analysis; from the perspective of frequency domain, two parameter 
settings are proposed to cope with more and less original channels (the 
number of channels of DatasetIIIa is nearly three times that of Data-
set2a). However, when conducting cross-subject experiments, the pre-
requisite is to use the same number of channels to record raw EEG, so the 
parameters in frequency domain is consistent for each subject; further 
analysis of the channel selection strategy proposed, the optimal channel 
group can be obtained by the union processing of top K channels in each 
time-frequency subband. The selection of parameter K is done by 
determining a range of values and obtaining the best effect by traversal. 
Such a uniform process and parameter setting achieve excellent and 
effective results on the 12 subjects, where there is no manual interven-
tion. So it is reasonable to infer that this algorithm can achieve excellent 
results on other subjects as well. 

Further discussing the effect of classes growing on the computational 
complexity of the algorithm in this paper, the effort of some operations 
are independent of the class number, such as time windows generation 
in the time domain and filter banks filtering in the frequency domain, 
but both the CCR calculation and the OVO-CSSP feature extraction 
method are based on the idea of the “one versus one”, which convert N 
classification problems into N×(N-1)/2 binary classification problems, 
as the number of classes boosting, the computation of these parts will 
increase. However, we conduct time-consuming statistics on each part of 
the proposed algorithm, as shown in Table 7. The results show that the 
time consumption of the proposed algorithm can well meet the re-
quirements of the online BCI system. 

5. Conclusion 

In this paper, we propose a novel classification algorithm based on 
multi-domain information fusion. The algorithm solves some drawbacks 
of the traditional CSP including: the contradiction between powerful 
performance and numerous input channels, the lack of time-frequency 
domain information, the poor feature extraction performance on 
multi-classes MI EEG signals. The major contribution of this work is to 
use less number of channels, but achieve a promising classification re-
sults. The proposed channel selection strategy can adapt to the neural 
information contained in the EEG signals of subjects, which can select 
optimal channel groups located at the motor areas of the cerebral cortex, 
further excluding the interference of channels not related to the MI 
tasks. Moreover, The excellent classification results achieved on the two 
datasets we used show that the feature vectors extracted by our method 
are characterized by strong representation ability and rich information. 

Table 7 
Time consumption statistics of the algorithms used in this paper.   

Time window length Select the optimal channel group Feature extraction Classification 

Time consumption(s) Training 3 0.011 0.01 24 
Testing 3 — 0.01 0.065  
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The follow-up work of this paper is to continue to study and optimize the 
proposed algorithm, and to design an online system of MI-BCI based on 
the algorithm of this paper using the existing conditions in our 
laboratory. 
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